Сравнение простых дробей с разными знаменателями. Сравнение дробей. Как сравнивать дроби с разными знаменателями? Умножение на сопряженное
Домой / Бег / Сравнение простых дробей с разными знаменателями. Сравнение дробей. Как сравнивать дроби с разными знаменателями? Умножение на сопряженное

Сравнение простых дробей с разными знаменателями. Сравнение дробей. Как сравнивать дроби с разными знаменателями? Умножение на сопряженное

В этом уроке мы научимся сравнивать дроби между собой. Это очень полезный навык, который необходим для решения целого класса более сложных задач.

Для начала напомню определение равенства дробей:

Дроби a /b и c /d называются равными, если ad = bc .

  1. 5/8 = 15/24, поскольку 5 · 24 = 8 · 15 = 120;
  2. 3/2 = 27/18, поскольку 3 · 18 = 2 · 27 = 54.

Во всех остальных случаях дроби являются неравными, и для них справедливо одно из следующих утверждений:

  1. Дробь a /b больше, чем дробь c /d ;
  2. Дробь a /b меньше, чем дробь c /d .

Дробь a /b называется большей, чем дробь c /d , если a /b − c /d > 0.

Дробь x /y называется меньшей, чем дробь s /t , если x /y − s /t < 0.

Обозначение:

Таким образом, сравнение дробей сводится к их вычитанию. Вопрос: как не запутаться с обозначениями «больше» (>) и «меньше» (<)? Для ответа просто приглядитесь к тому, как выглядят эти знаки:

  1. Расширяющаяся часть галки всегда направлена к большему числу;
  2. Острый нос галки всегда указывает на меньшее число.

Часто в задачах, где требуется сравнить числа, между ними ставят знак «∨». Это - галка носом вниз, что как бы намекает: большее из чисел пока не определено.

Задача. Сравнить числа:

Следуя определению, вычтем дроби друг из друга:


В каждом сравнении нам потребовалось приводить дроби к общему знаменателю. В частности, используя метод «крест-накрест» и поиск наименьшего общего кратного. Я намеренно не акцентировал внимание на этих моментах, но если что-то непонятно, загляните в урок «Сложение и вычитание дробей » - он совсем легкий.

Сравнение десятичных дробей

В случае с десятичными дробями все намного проще. Здесь не надо ничего вычитать - достаточно просто сравнить разряды. Не лишним будет вспомнить, что такое значащая часть числа. Тем, кто забыл, предлагаю повторить урок «Умножение и деление десятичных дробей » - это также займет буквально пару минут.

Положительная десятичная дробь X больше положительной десятичной дроби Y , если в ней найдется такой десятичный разряд, что:

  1. Цифра, стоящая в этом разряде в дроби X , больше соответствующей цифры в дроби Y ;
  2. Все разряды старше данного у дробей X и Y совпадают.
  1. 12,25 > 12,16. Первые два разряда совпадают (12 = 12), а третий - больше (2 > 1);
  2. 0,00697 < 0,01. Первые два разряда опять совпадают (00 = 00), а третий - меньше (0 < 1).

Другими словами, мы последовательно просматриваем десятичные разряды и ищем различие. При этом большей цифре соответствует и большая дробь.

Однако это определение требует пояснения. Например, как записывать и сравнивать разряды до десятичной точки? Вспомните: к любому числу, записанному в десятичной форме, можно приписывать слева любое количество нулей. Вот еще пара примеров:

  1. 0,12 < 951, т.к. 0,12 = 000,12 - приписали два нуля слева. Очевидно, 0 < 9 (речь идет о старшем разряде).
  2. 2300,5 > 0,0025, т.к. 0,0025 = 0000,0025 - приписали три нуля слева. Теперь видно, что различие начинается в первом же разряде: 2 > 0.

Конечно, в приведенных примерах с нулями был явный перебор, но смысл именно такой: заполнить недостающие разряды слева, а затем сравнить.

Задача. Сравните дроби:

  1. 0,029 ∨ 0,007;
  2. 14,045 ∨ 15,5;
  3. 0,00003 ∨ 0,0000099;
  4. 1700,1 ∨ 0,99501.

По определению имеем:

  1. 0,029 > 0,007. Первые два разряда совпадают (00 = 00), дальше начинается различие (2 > 0);
  2. 14,045 < 15,5. Различие - во втором разряде: 4 < 5;
  3. 0,00003 > 0,0000099. Здесь надо внимательно считать нули. Первые 5 разрядов в обеих дробях нулевые, но дальше в первой дроби стоит 3, а во второй - 0. Очевидно, 3 > 0;
  4. 1700,1 > 0,99501. Перепишем вторую дробь в виде 0000,99501, добавив 3 нуля слева. Теперь все очевидно: 1 > 0 - различие обнаружено в первом же разряде.

К сожалению, приведенная схема сравнения десятичных дробей не универсальна. Этим методом можно сравнивать только положительные числа . В общем же случае алгоритм работы следующий:

  1. Положительная дробь всегда больше отрицательной;
  2. Две положительные дроби сравниваются по приведенному выше алгоритму;
  3. Две отрицательные дроби сравниваются так же, но в конце знак неравенства меняется на противоположный.

Ну как, неслабо? Сейчас рассмотрим конкретные примеры - и все станет понятно.

Задача. Сравните дроби:

  1. 0,0027 ∨ 0,0072;
  2. −0,192 ∨ −0,39;
  3. 0,15 ∨ −11,3;
  4. 19,032 ∨ 0,0919295;
  5. −750 ∨ −1,45.
  1. 0,0027 < 0,0072. Здесь все стандартно: две положительные дроби, различие начинается на 4 разряде (2 < 7);
  2. −0,192 > −0,39. Дроби отрицательные, 2 разряд разный. 1 < 3, но в силу отрицательности знак неравенства меняется на противоположный;
  3. 0,15 > −11,3. Положительное число всегда больше отрицательного;
  4. 19,032 > 0,091. Достаточно вторую дробь переписать в виде 00,091, чтобы увидеть, что различие возникает уже в 1 разряде;
  5. −750 < −1,45. Если сравнить числа 750 и 1,45 (без минусов), легко видеть, что 750 > 001,45. Различие - в первом же разряде.

В повседневной жизни нам часто приходится сравнивать дробные величины. Чаще всего это не вызывает каких-либо трудностей. Действительно, всем понятно, что половина яблока больше, чем четверть. Но когда необходимо записать это в виде математического выражения, это может вызвать затруднения. Применяя следующие математические правила, вы легко можете справиться с этой задачей.

Как сравнивать дроби с одинаковыми знаменателями

Такие дроби сравнивать удобнее всего. В этом случае используйте правило:

Из двух дробей с одинаковыми знаменателями, но разными числителя, большей будет та, числитель которой больше, а меньшей – та, числитель которой меньше.

Например, сравнить дроби 3/8 и 5/8. Знаменатели в этом примере равны, следовательно, применяем это правило. 3<5 и 3/8 меньше, чем 5/8.

И действительно, если разрезать две пиццы на 8 долей, то 3/8 доли всегда меньше, чем 5/8.

Сравнение дробей с одинаковыми числителями и разными знаменателями

В этом случае сравнивают размеры долей-знаменателей. Следует применять правило:

Если у двух дробей числители равны, то больше та дробь, знаменатель которой меньше.

Например, сравнить дроби 3/4 и 3/8. В этом примере числители равны, значит, используем второе правило. У дроби 3/4 знаменатель меньше, чем у дроби 3/8. Следовательно 3/4>3/8

И действительно, если вы съедите 3 куска пиццы, разделенной на 4 части, то будете более сыты, чем если бы съели 3 куска пиццы, разделенной на 8 частей.


Сравнение дробей с разными числителями и знаменателями

Применяем третье правило:

Сравнение дробей с разными знаменателями нужно привести к сравнению дробей с одинаковыми знаменателями. Для этого необходимо привести дроби к общему знаменателю и использовать первое правило.

Например, необходимо сравнить дроби и . Для определения большей дроби приведем эти две дроби к общему знаменателю:

  • Теперь найдём второй дополнительный множитель: 6:3=2. Записываем его над второй дробью:

Правила сравнения обыкновенных дробей зависят от вида дроби (правильная, неправильная, смешанная дробь) и от знаменателен (одинаковые или разные) у сравниваемых дробей.

В этом разделе рассматриваются варианты сравнения дробей, имеющих одинаковые числители или знаменатели.

Правило. Чтобы сравнить две дроби с одинаковыми знаменателями, надо сравнить их числители. Больше (меньше) та дробь, у которой числитель больше (меньше).

Например, сравнить дроби:

Правило. Чтобы сравнить правильные дроби с одинаковыми числителями, надо сравнить их знаменатели. Больше (меньше) та дробь, у которой знаменатель меньше (больше).

Например, сравнить дроби:

Сравнение правильных, неправильных и смешанных дробей между собой

Правило. Неправильная и смешанная дроби всегда больше любой правильной дроби.

Правильная дробь но определению меньше 1, поэтому неправильная и смешанная дроби (имеющие в своем составе число, равное или больше 1) больше правильной дроби.

Правило. Из двух смешанных дробей больше (меньше) та, у которой целая часть дроби больше (меньше). При равенстве целых частей смешанных дробей больше (меньше) та дробь, у которой больше (меньше) дробная часть.

Продолжаем изучать дроби. Сегодня мы поговорим об их сравнении. Тема интересная и полезная. Она позволит новичку почувствовать себя учёным в белом халате.

Суть сравнения дробей заключается в том, чтобы узнать какая из двух дробей больше или меньше.

Чтобы ответить на вопрос какая из двух дробей больше или меньше, пользуются , такими как больше (>) или меньше (<).

Ученые-математики уже позаботились о готовых правилах, позволяющие сразу ответить на вопрос какая дробь больше, а какая меньше. Эти правила можно смело применять.

Мы рассмотрим все эти правила и попробуем разобраться, почему происходит именно так.

Содержание урока

Сравнение дробей с одинаковыми знаменателями

Дроби, которые нужно сравнить, попадаются разные. Самый удачный случай это когда у дробей одинаковые знаменатели, но разные числители. В этом случае применяют следующее правило:

Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше. И соответственно меньше будет та дробь, у которой числитель меньше.

Например, сравним дроби и и ответим, какая из этих дробей больше. Здесь одинаковые знаменатели, но разные числители. У дроби числитель больше, чем у дроби . Значит дробь больше, чем . Так и отвечаем. Отвечать нужно с помощью значка больше (>)

Этот пример можно легко понять, если вспомнить про пиццы, которые разделены на четыре части. пиццы больше, чем пиццы:

Сравнение дробей с одинаковыми числителями

Следующий случай, в который мы можем попасть, это когда числители дробей одинаковые, но знаменатели разные. Для таких случаев предусмотрено следующее правило:

Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше. И соответственно меньше та дробь, у которой знаменатель больше.

Например, сравним дроби и . У этих дробей одинаковые числители. У дроби знаменатель меньше, чем у дроби . Значит дробь больше, чем дробь . Так и отвечаем:

Этот пример можно легко понять, если вспомнить про пиццы, которые разделены на три и четыре части. пиццы больше, чем пиццы:

Каждый согласится с тем, что первая пицца больше, чем вторая.

Сравнение дробей с разными числителями и разными знаменателями

Нередко случается так, что приходиться сравнивать дроби с разными числителями и разными знаменателями.

Например, сравнить дроби и . Чтобы ответить на вопрос, какая из этих дробей больше или меньше, нужно привести их к одинаковому (общему) знаменателю. Затем можно будет легко определить какая дробь больше или меньше.

Приведём дроби и к одинаковому (общему) знаменателю. Найдём (НОК) знаменателей обеих дробей. НОК знаменателей дробей и это число 6.

Теперь находим дополнительные множители для каждой дроби. Разделим НОК на знаменатель первой дроби . НОК это число 6, а знаменатель первой дроби это число 2. Делим 6 на 2, получаем дополнительный множитель 3. Записываем его над первой дробью:

Теперь найдём второй дополнительный множитель. Разделим НОК на знаменатель второй дроби . НОК это число 6, а знаменатель второй дроби это число 3. Делим 6 на 3, получаем дополнительный множитель 2. Записываем его над второй дробью:

Умножим дроби на свои дополнительные множители:

Мы пришли к тому, что дроби, у которых были разные знаменатели, превратились в дроби, у которых одинаковые знаменатели. А как сравнивать такие дроби мы уже знаем. Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше:

Правило правилом, а мы попробуем разобраться почему больше, чем . Для этого выделим целую часть в дроби . В дроби ничего выделять не нужно, поскольку эта дробь уже правильная.

После выделения целой части в дроби , получим следующее выражение:

Теперь можно легко понять, почему больше, чем . Давайте нарисуем эти дроби в виде пицц:

2 целые пиццы и пиццы, больше чем пиццы.

Вычитание смешанных чисел. Сложные случаи.

Вычитая смешанные числа, иногда можно обнаружить, что всё идёт не так гладко, как хотелось бы. Часто случается так, что при решении какого-нибудь примера ответ получается не таким, каким он должен быть.

При вычитании чисел уменьшаемое должно быть больше вычитаемого. Только в этом случае будет получен нормальный ответ.

Например, 10−8=2

10 — уменьшаемое

8 — вычитаемое

2 — разность

Уменьшаемое 10 больше вычитаемого 8, поэтому мы получили нормальный ответ 2.

А теперь посмотрим, что будет если уменьшаемое окажется меньше вычитаемого. Пример 5−7=−2

5 — уменьшаемое

7 — вычитаемое

−2 — разность

В этом случае мы выходим за пределы привычных для нас чисел и попадаем в мир отрицательных чисел, где нам ходить пока рано, а то и опасно. Чтобы работать с отрицательными числами, нужна соответствующая математическая подготовка, которую мы ещё не получили.

Если при решении примеров на вычитание вы обнаружите, что уменьшаемое меньше вычитаемого, то можете пока пропустить такой пример. Работать с отрицательными числами допустимо только после их изучения.

С дробями ситуация та же самая. Уменьшаемое должно быть больше вычитаемого. Только в этом случае можно будет получить нормальный ответ. А чтобы понять больше ли уменьшаемая дробь, чем вычитаемая, нужно уметь сравнить эти дроби.

Например, решим пример .

Это пример на вычитание. Чтобы решить его, нужно проверить больше ли уменьшаемая дробь, чем вычитаемая. больше чем

поэтому смело можем вернуться к примеру и решить его:

Теперь решим такой пример

Проверяем больше ли уменьшаемая дробь, чем вычитаемая. Обнаруживаем, что она меньше:

В этом случае разумнее остановиться и не продолжать дальнейшее вычисление. Вернёмся к этому примеру, когда изучим отрицательные числа.

Смешанные числа перед вычитанием тоже желательно проверять. Например, найдём значение выражения .

Сначала проверим больше ли уменьшаемое смешанное число, чем вычитаемое. Для этого переведём смешанные числа в неправильные дроби:

Получили дроби с разными числителями и разными знаменателями. Чтобы сравнить такие дроби, нужно привести их к одинаковому (общему) знаменателю. Не будем подробно расписывать, как это сделать. Если испытываете затруднения, обязательно повторите .

После приведения дробей к одинаковому знаменателю, получаем следующее выражение:

Теперь нужно сравнить дроби и . Это дроби с одинаковыми знаменателями. Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.

У дроби числитель больше, чем у дроби . Значит дробь больше, чем дробь .

А это значит, что уменьшаемое больше, чем вычитаемое

А значит мы можем вернуться к нашему примеру и смело решить его:

Пример 3. Найти значение выражения

Проверим больше ли уменьшаемое, чем вычитаемое.

Переведём смешанные числа в неправильные дроби:

Получили дроби с разными числителями и разными знаменателями. Приведем данные дроби к одинаковому (общему) знаменателю:

Теперь сравним дроби и . У дроби числитель меньше, чем у дроби , значит дробь меньше, чем дробь